FACULTY OF ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING SECOND SEMESTER EXAMINATION (JULY 2019) 2018/2019 ACADEMIC SESSION

Course Title: Engineering Mathematics 2

Course Code: GNE 212

HOD'S SIGNATURE

Instructions:

- 1) Attempt Question One and any three
- 2) Time Allowed: 3 hours
- 3) SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAMINATION

FACULTY OF ENGINEERING DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Second Semester 2018/2019 Session

TIME ALLOWED: 3 HOURS

INSTRUCTION: ANSWER QUESTIONS 1 AND ANY OTHER THREE

QUESTION 1 (30 marks)

Answer the following questions as the case may be

A. Express the following functions as partial fractions

i.
$$\frac{2x}{(25-x^2)(x-3)}$$
 (2 marks)

ii.
$$\frac{2x+3}{(x^2+3)(2-x)}$$
 (2 marks)

iii.
$$\frac{5x+4}{(x+2)^2(x-1)}$$
 (2 marks)

iv.
$$\frac{2x^2+1}{(x+2)(x-1)}$$
 (3 marks)

B. Determine general solutions to the following ordinary differential equations

i.
$$\frac{dy(y+1)}{dx(x+3)} = 1$$
 (3 marks)

ii.
$$\frac{dy}{dx} + 2y = 3$$
 (3 marks)

iii.
$$\frac{dy}{dx} + 4x = -5y$$
 (3 marks)

iv.
$$\frac{dy}{dx} - 5x = -3xy$$
 (3 marks)

v.
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
 (4 marks)

vi.
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = x^2 + 4$$
 (5 marks)

C. The rate of change in the area of a curve can be presented as $\frac{dA}{dx} = x^2 + 4$ Determine the area bounded between 1 and 2 using trapezoidal method with 0.1 step.

QUESTION 2 (10 marks):

- a. Express the partial fraction of $\frac{3x^2 + 3}{(x+4)(x-5)}$ (2 marks)
- b. Find the general solution to this first order differential equation $\frac{dy(y+1)}{dx(x+3)} = 1$ (3 marks)
- c. Determine the particular solution to $\frac{d^2y}{dx^2} 2\frac{dy}{dx} 3y = 0$, when y(1) = 8 (5 marks)

QUESTION 3 (10 marks):

- a. Express the partial fraction of $\frac{3x}{(x+2)^2(x-3)}$ (2 marks)
- b. Find the general solution to this first order differential equation $\frac{dy}{dx} = 5-4y$ (3 marks)
- c. Determine the particular solution to $\frac{dy}{dx} + 11y = 5 6y$, when y (0) = 6 (5 marks)

QUESTION 4 (10 marks):

- a. If an expression $y = x^3 4x^2 x 12$ has root between 4 and 5 determine the root using Newton's method (2 marks)
- b. Find the general solution to this second order differential equation $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = 0$ (3 marks)
- c. Determine the particular solution to $-\frac{dy}{dx}$ -4y = -8x, when y (2) = 8 (5 marks)

QUESTION 5 (10 marks):

- a. Find the general solution to $\frac{dy}{dx} 10x = -6y$ (2 marks)
- b. Determine the particular solution to this second order differential equation $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = x^2 + 4 \text{ when } y(0) = 2 \text{ and } \frac{dy}{dx}(0) = 1 \qquad (4 \text{ marks})$
- c. Find the general solution to this second order differential equation $\frac{d^2y}{dx^2} + 4 = 0$ Express your answer in Euler format (4 marks)

QUESTION 6 (10 marks):

a. Find the general solution to this second order differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 2y = 0 ag{4 marks}$$

b. Determine the particular solution to this second order differential equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
, when $y(0) = 3$ and $\frac{dy}{dx}(0) = 2$ (6 marks)